Module
lazyllm.module.ModuleBase
Module is the top-level component in LazyLLM, possessing four key capabilities: training, deployment, inference, and evaluation. Each module can choose to implement some or all of these capabilities, and each capability can be composed of one or more components. ModuleBase itself cannot be instantiated directly; subclasses that inherit and implement the forward function can be used as a functor. Similar to PyTorch's Module, when a Module A holds an instance of another Module B as a member variable, B will be automatically added to A's submodules. If you need the following capabilities, please have your custom class inherit from ModuleBase:
-
Combine some or all of the training, deployment, inference, and evaluation capabilities. For example, an Embedding model requires training and inference.
-
If you want the member variables to possess some or all of the capabilities for training, deployment, and evaluation, and you want to train, deploy, and evaluate these members through the start, update, eval, and other methods of the Module's root node.
-
Pass user-set parameters directly to your custom module from the outermost layer (refer to WebModule).
-
The desire for it to be usable by the parameter grid search module (refer to TrialModule).
Examples:
>>> import lazyllm
>>> class Module(lazyllm.module.ModuleBase):
... pass
...
>>> class Module2(lazyllm.module.ModuleBase):
... def __init__(self):
... super(__class__, self).__init__()
... self.m = Module()
...
>>> m = Module2()
>>> m.submodules
[<Module type=Module>]
>>> m.m3 = Module()
>>> m.submodules
[<Module type=Module>, <Module type=Module>]
Source code in lazyllm/module/module.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
|
_get_deploy_tasks()
Define a deployment task. This function returns a deployment pipeline. Subclasses that override this function can be deployed during the update/start phase.
Examples:
>>> import lazyllm
>>> class MyModule(lazyllm.module.ModuleBase):
... def _get_deploy_tasks(self):
... return lazyllm.pipeline(lambda : 1, lambda x: print(x))
...
>>> MyModule().start()
1
Source code in lazyllm/module/module.py
_get_train_tasks()
Define a training task. This function returns a training pipeline. Subclasses that override this function can be trained or fine-tuned during the update phase.
Examples:
>>> import lazyllm
>>> class MyModule(lazyllm.module.ModuleBase):
... def _get_train_tasks(self):
... return lazyllm.pipeline(lambda : 1, lambda x: print(x))
...
>>> MyModule().update()
1
Source code in lazyllm/module/module.py
eval(*, recursive=True)
Evaluate the module (and all its submodules). This function takes effect after the module has been set with an evaluation set using 'evalset'.
Parameters:
-
recursive
(bool
, default:True
) –Whether to recursively evaluate all submodules. Defaults to True.
Examples:
>>> import lazyllm
>>> class MyModule(lazyllm.module.ModuleBase):
... def forward(self, input):
... return f'reply for input'
...
>>> m = MyModule()
>>> m.evalset([1, 2, 3])
>>> m.eval().eval_result
['reply for input', 'reply for input', 'reply for input']
Source code in lazyllm/module/module.py
evalset(evalset, load_f=None, collect_f=lambda x: x)
during update or eval, and the results will be stored in the eval_result variable.
Examples:
>>> import lazyllm
>>> m = lazyllm.module.TrainableModule().deploy_method(lazyllm.deploy.dummy).finetune_method(lazyllm.finetune.dummy).trainset("").mode("finetune").prompt(None)
>>> m.evalset([1, 2, 3])
>>> m.update()
INFO: (lazyllm.launcher) PID: dummy finetune!, and init-args is {}
>>> print(m.eval_result)
["reply for 1, and parameters is {'do_sample': False, 'temperature': 0.1}", "reply for 2, and parameters is {'do_sample': False, 'temperature': 0.1}", "reply for 3, and parameters is {'do_sample': False, 'temperature': 0.1}"]
Source code in lazyllm/module/module.py
forward(*args, **kw)
Define computation steps executed each time, all subclasses of ModuleBase need to override.
Examples:
>>> import lazyllm
>>> class MyModule(lazyllm.module.ModuleBase):
... def forward(self, input):
... return input + 1
...
>>> MyModule()(1)
2
Source code in lazyllm/module/module.py
start()
Deploy the module and all its submodules.
Examples:
>>> import lazyllm
>>> m = lazyllm.TrainableModule().deploy_method(lazyllm.deploy.dummy).prompt(None)
>>> m.start()
<Module type=Trainable mode=None basemodel= target= stream=False return_trace=False>
>>> m(1)
"reply for 1, and parameters is {'do_sample': False, 'temperature': 0.1}"
Source code in lazyllm/module/module.py
restart()
Re-deploy the module and all its submodules.
Examples:
>>> import lazyllm
>>> m = lazyllm.TrainableModule().deploy_method(lazyllm.deploy.dummy).prompt(None)
>>> m.restart()
<Module type=Trainable mode=None basemodel= target= stream=False return_trace=False>
>>> m(1)
"reply for 1, and parameters is {'do_sample': False, 'temperature': 0.1}"
Source code in lazyllm/module/module.py
update(*, recursive=True)
Update the module (and all its submodules). The module will be updated when the _get_train_tasks
method is overridden.
Parameters:
-
recursive
(bool
, default:True
) –Whether to recursively update all submodules, default is True.
Examples:
>>> import lazyllm
>>> m = lazyllm.module.TrainableModule().finetune_method(lazyllm.finetune.dummy).trainset("").deploy_method(lazyllm.deploy.dummy).mode('finetune').prompt(None)
>>> m.evalset([1, 2, 3])
>>> m.update()
INFO: (lazyllm.launcher) PID: dummy finetune!, and init-args is {}
>>> print(m.eval_result)
["reply for 1, and parameters is {'do_sample': False, 'temperature': 0.1}", "reply for 2, and parameters is {'do_sample': False, 'temperature': 0.1}", "reply for 3, and parameters is {'do_sample': False, 'temperature': 0.1}"]
Source code in lazyllm/module/module.py
lazyllm.module.ActionModule
Bases: ModuleBase
Used to wrap a Module around functions, modules, flows, Module, and other callable objects. The wrapped Module (including the Module within the flow) will become a submodule of this Module.
Parameters:
-
action
(Callable | list[Callable]
, default:()
) –The object to be wrapped, which is one or a set of callable objects.
Examples:
>>> import lazyllm
>>> def myfunc(input): return input + 1
...
>>> class MyModule1(lazyllm.module.ModuleBase):
... def forward(self, input): return input * 2
...
>>> class MyModule2(lazyllm.module.ModuleBase):
... def _get_deploy_tasks(self): return lazyllm.pipeline(lambda : print('MyModule2 deployed!'))
... def forward(self, input): return input * 4
...
>>> class MyModule3(lazyllm.module.ModuleBase):
... def _get_deploy_tasks(self): return lazyllm.pipeline(lambda : print('MyModule3 deployed!'))
... def forward(self, input): return f'get {input}'
...
>>> m = lazyllm.ActionModule(myfunc, lazyllm.pipeline(MyModule1(), MyModule2), MyModule3())
>>> print(m(1))
get 16
>>>
>>> m.evalset([1, 2, 3])
>>> m.update()
MyModule2 deployed!
MyModule3 deployed!
>>> print(m.eval_result)
['get 16', 'get 24', 'get 32']
evalset(evalset, load_f=None, collect_f=<function ModuleBase.<lambda>>)
Set the evaluation set for the Module. Modules that have been set with an evaluation set will be evaluated during update
or eval
, and the evaluation results will be stored in the eval_result variable.
evalset(evalset, collect_f=lambda x: ...)→ None
Parameters:
-
evalset
(list)
) –Evaluation set
-
collect_f
(Callable)
) –Post-processing method for evaluation results, no post-processing by default.
evalset(evalset, load_f=None, collect_f=lambda x: ...)→ None
Parameters:
-
evalset
(str)
) –Path to the evaluation set
-
load_f
(Callable)
) –Method for loading the evaluation set, including parsing file formats and converting to a list
-
collect_f
(Callable)
) –Post-processing method for evaluation results, no post-processing by default.
Examples:
>>> import lazyllm
>>> m = lazyllm.module.TrainableModule().deploy_method(deploy.dummy)
>>> m.evalset([1, 2, 3])
>>> m.update()
INFO: (lazyllm.launcher) PID: dummy finetune!, and init-args is {}
>>> m.eval_result
["reply for 1, and parameters is {'do_sample': False, 'temperature': 0.1}", "reply for 2, and parameters is {'do_sample': False, 'temperature': 0.1}", "reply for 3, and parameters is {'do_sample': False, 'temperature': 0.1}"]
Source code in lazyllm/module/module.py
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
|
lazyllm.module.TrainableModule
Bases: UrlModule
Trainable module, all models (including LLM, Embedding, etc.) are served through TrainableModule
TrainableModule(base_model='', target_path='', *, stream=False, return_trace=False)
Parameters:
-
base_model
(str
, default:''
) –Name or path of the base model. If the model is not available locally, it will be automatically downloaded from the model source.
-
target_path
(str
, default:''
) –Path to save the fine-tuning task. Can be left empty if only performing inference.
-
source
(str
) –Model source, optional values are huggingface or. If not set, it will read the value from the environment variable LAZYLLM_MODEL_SOURCE.
-
stream
(bool
, default:False
) –Whether to output stream. If the inference engine used does not support streaming, this parameter will be ignored.
-
return_trace
(bool
, default:False
) –Whether to record the results in trace.
TrainableModule.trainset(v):
Set the training set for TrainableModule
Parameters:
-
v
(str
) –Path to the training/fine-tuning dataset.
Examples:
>>> import lazyllm
>>> m = lazyllm.module.TrainableModule().finetune_method(finetune.dummy).trainset('/file/to/path').deploy_method(None).mode('finetune')
>>> m.update()
INFO: (lazyllm.launcher) PID: dummy finetune!, and init-args is {}
TrainableModule.train_method(v, **kw):
Set the training method for TrainableModule. Continued pre-training is not supported yet, expected to be available in the next version.
Parameters:
-
v
(LazyLLMTrainBase
) –Training method, options include
train.auto
etc. -
kw
(**dict
) –Parameters required by the training method, corresponding to v.
TrainableModule.finetune_method(v, **kw):
Set the fine-tuning method and its parameters for TrainableModule.
Parameters:
-
v
(LazyLLMFinetuneBase
) –Fine-tuning method, options include
finetune.auto
/finetune.alpacalora
/finetune.collie
etc. -
kw
(**dict
) –Parameters required by the fine-tuning method, corresponding to v.
Examples:
>>> import lazyllm
>>> m = lazyllm.module.TrainableModule().finetune_method(finetune.dummy).deploy_method(None).mode('finetune')
>>> m.update()
INFO: (lazyllm.launcher) PID: dummy finetune!, and init-args is {}
TrainableModule.deploy_method(v, **kw):
Set the deployment method and its parameters for TrainableModule.
Parameters:
-
v
(LazyLLMDeployBase
) –Deployment method, options include
deploy.auto
/deploy.lightllm
/deploy.vllm
etc. -
kw
(**dict
) –Parameters required by the deployment method, corresponding to v.
Examples:
>>> import lazyllm
>>> m = lazyllm.module.TrainableModule().deploy_method(deploy.dummy).mode('finetune')
>>> m.evalset([1, 2, 3])
>>> m.update()
INFO: (lazyllm.launcher) PID: dummy finetune!, and init-args is {}
>>> m.eval_result
["reply for 1, and parameters is {'do_sample': False, 'temperature': 0.1}", "reply for 2, and parameters is {'do_sample': False, 'temperature': 0.1}", "reply for 3, and parameters is {'do_sample': False, 'temperature': 0.1}"]
TrainableModule.mode(v):
Set whether to execute training or fine-tuning during update for TrainableModule.
Parameters:
-
v
(str
) –Sets whether to execute training or fine-tuning during update, options are 'finetune' and 'train', default is 'finetune'.
Examples:
>>> import lazyllm
>>> m = lazyllm.module.TrainableModule().finetune_method(finetune.dummy).deploy_method(None).mode('finetune')
>>> m.update()
INFO: (lazyllm.launcher) PID: dummy finetune!, and init-args is {}
eval(*, recursive=True)
Evaluate the module (and all its submodules). This function takes effect after the module has set an evaluation set through evalset.
Parameters:
-
recursive
(bool)
) –Whether to recursively evaluate all submodules, default is True.
evalset(evalset, load_f=None, collect_f=<function ModuleBase.<lambda>>)
Set the evaluation set for the Module. Modules that have been set with an evaluation set will be evaluated during update
or eval
, and the evaluation results will be stored in the eval_result variable.
evalset(evalset, collect_f=lambda x: ...)→ None
Parameters:
-
evalset
(list)
) –Evaluation set
-
collect_f
(Callable)
) –Post-processing method for evaluation results, no post-processing by default.
evalset(evalset, load_f=None, collect_f=lambda x: ...)→ None
Parameters:
-
evalset
(str)
) –Path to the evaluation set
-
load_f
(Callable)
) –Method for loading the evaluation set, including parsing file formats and converting to a list
-
collect_f
(Callable)
) –Post-processing method for evaluation results, no post-processing by default.
Examples:
>>> import lazyllm
>>> m = lazyllm.module.TrainableModule().deploy_method(deploy.dummy)
>>> m.evalset([1, 2, 3])
>>> m.update()
INFO: (lazyllm.launcher) PID: dummy finetune!, and init-args is {}
>>> m.eval_result
["reply for 1, and parameters is {'do_sample': False, 'temperature': 0.1}", "reply for 2, and parameters is {'do_sample': False, 'temperature': 0.1}", "reply for 3, and parameters is {'do_sample': False, 'temperature': 0.1}"]
restart()
Restart the module and all its submodules.
Examples:
>>> import lazyllm
>>> m = lazyllm.module.TrainableModule().deploy_method(deploy.dummy)
>>> m.restart()
>>> m(1)
"reply for 1, and parameters is {'do_sample': False, 'temperature': 0.1}"
start()
Deploy the module and all its submodules.
Examples:
import lazyllm
m = lazyllm.module.TrainableModule().deploy_method(deploy.dummy)
m.start()
m(1)
"reply for 1, and parameters is {'do_sample': False, 'temperature': 0.1}"
Source code in lazyllm/module/module.py
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 |
|
lazyllm.module.UrlModule
Bases: ModuleBase
, UrlTemplate
The URL obtained from deploying the ServerModule can be wrapped into a Module. When calling __call__
, it will access the service.
Parameters:
-
url
(str
, default:''
) –The URL of the service to be wrapped.
-
stream
(bool
, default:False
) –Whether to request and output in streaming mode, default is non-streaming.
-
return_trace
(bool
, default:False
) –Whether to record the results in trace, default is False.
Examples:
>>> import lazyllm
>>> def demo(input): return input * 2
...
>>> s = lazyllm.ServerModule(demo, launcher=lazyllm.launchers.empty(sync=False))
>>> s.start()
INFO: Uvicorn running on http://0.0.0.0:35485
>>> u = lazyllm.UrlModule(url=s._url)
>>> print(u(1))
2
Source code in lazyllm/module/module.py
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 |
|
forward(__input=package(), *, llm_chat_history=None, lazyllm_files=None, tools=None, stream_output=False, **kw)
Defines the computation steps to be executed each time. All subclasses of ModuleBase need to override this function.
Examples:
>>> import lazyllm
>>> class MyModule(lazyllm.module.ModuleBase):
... def forward(self, input):
... return input + 1
...
>>> MyModule()(1)
2
Source code in lazyllm/module/module.py
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
|
lazyllm.module.ServerModule
Bases: UrlModule
Using FastAPI, any callable object can be wrapped into an API service, allowing the simultaneous launch of one main service and multiple satellite services.
Parameters:
-
m
(Callable
) –The function to be wrapped as a service. It can be a function or a functor. When launching satellite services, it needs to be an object implementing
__call__
(a functor). -
pre
(Callable
, default:None
) –Preprocessing function executed in the service process. It can be a function or a functor, default is
None
. -
post
(Callable
, default:None
) –Postprocessing function executed in the service process. It can be a function or a functor, default is
None
. -
stream
(bool
, default:False
) –Whether to request and output in streaming mode, default is non-streaming.
-
return_trace
(bool
, default:False
) –Whether to record the results in trace, default is
False
. -
port
(int
, default:None
) –Specifies the port after the service is deployed. The default is
None
, which will generate a random port. -
launcher
(LazyLLMLaunchersBase
, default:None
) –Used to select the compute node for service execution, default is
launchers.remote
.
Examples:
>>> def demo(input): return input * 2
...
>>> s = lazyllm.ServerModule(demo, launcher=launchers.empty(sync=False))
>>> s.start()
INFO: Uvicorn running on http://0.0.0.0:35485
>>> print(s(1))
2
>>> class MyServe(object):
... def __call__(self, input):
... return 2 * input
...
... @lazyllm.FastapiApp.post
... def server1(self, input):
... return f'reply for {input}'
...
... @lazyllm.FastapiApp.get
... def server2(self):
... return f'get method'
...
>>> m = lazyllm.ServerModule(MyServe(), launcher=launchers.empty(sync=False))
>>> m.start()
>>> print(m(1))
INFO: Uvicorn running on http://0.0.0.0:32028
>>> print(m(1))
2
evalset(evalset, load_f=None, collect_f=<function ModuleBase.<lambda>>)
Set the evaluation set for the Module. Modules that have been set with an evaluation set will be evaluated during update
or eval
, and the evaluation results will be stored in the eval_result variable.
evalset(evalset, collect_f=lambda x: ...)→ None
Parameters:
-
evalset
(list)
) –Evaluation set
-
collect_f
(Callable)
) –Post-processing method for evaluation results, no post-processing by default.
evalset(evalset, load_f=None, collect_f=lambda x: ...)→ None
Parameters:
-
evalset
(str)
) –Path to the evaluation set
-
load_f
(Callable)
) –Method for loading the evaluation set, including parsing file formats and converting to a list
-
collect_f
(Callable)
) –Post-processing method for evaluation results, no post-processing by default.
Examples:
>>> import lazyllm
>>> m = lazyllm.module.TrainableModule().deploy_method(deploy.dummy)
>>> m.evalset([1, 2, 3])
>>> m.update()
INFO: (lazyllm.launcher) PID: dummy finetune!, and init-args is {}
>>> m.eval_result
["reply for 1, and parameters is {'do_sample': False, 'temperature': 0.1}", "reply for 2, and parameters is {'do_sample': False, 'temperature': 0.1}", "reply for 3, and parameters is {'do_sample': False, 'temperature': 0.1}"]
restart()
Restart the module and all its submodules.
Examples:
>>> import lazyllm
>>> m = lazyllm.module.TrainableModule().deploy_method(deploy.dummy)
>>> m.restart()
>>> m(1)
"reply for 1, and parameters is {'do_sample': False, 'temperature': 0.1}"
start()
Deploy the module and all its submodules.
Examples:
import lazyllm
m = lazyllm.module.TrainableModule().deploy_method(deploy.dummy)
m.start()
m(1)
"reply for 1, and parameters is {'do_sample': False, 'temperature': 0.1}"
Source code in lazyllm/module/module.py
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 |
|
lazyllm.module.TrialModule
Bases: object
Parameter grid search module will traverse all its submodules, collect all searchable parameters, and iterate over these parameters for fine-tuning, deployment, and evaluation.
Parameters:
-
m
(Callable
) –The submodule whose parameters will be grid-searched. Fine-tuning, deployment, and evaluation will be based on this module.
Examples:
>>> import lazyllm
>>> from lazyllm import finetune, deploy
>>> m = lazyllm.TrainableModule('b1', 't').finetune_method(finetune.dummy, **dict(a=lazyllm.Option(['f1', 'f2'])))
>>> m.deploy_method(deploy.dummy).mode('finetune').prompt(None)
>>> s = lazyllm.ServerModule(m, post=lambda x, ori: f'post2({x})')
>>> s.evalset([1, 2, 3])
>>> t = lazyllm.TrialModule(s)
>>> t.update()
>>>
dummy finetune!, and init-args is {a: f1}
dummy finetune!, and init-args is {a: f2}
[["post2(reply for 1, and parameters is {'do_sample': False, 'temperature': 0.1})", "post2(reply for 2, and parameters is {'do_sample': False, 'temperature': 0.1})", "post2(reply for 3, and parameters is {'do_sample': False, 'temperature': 0.1})"], ["post2(reply for 1, and parameters is {'do_sample': False, 'temperature': 0.1})", "post2(reply for 2, and parameters is {'do_sample': False, 'temperature': 0.1})", "post2(reply for 3, and parameters is {'do_sample': False, 'temperature': 0.1})"]]
Source code in lazyllm/module/trialmodule.py
lazyllm.module.OnlineChatModule
Used to manage and create access modules for large model platforms currently available on the market. Currently, it supports openai, sensenova, glm, kimi, qwen, doubao and deepseek (since the platform does not allow recharges for the time being, access is not supported for the time being). For how to obtain the platform's API key, please visit Getting Started
Parameters:
-
model
(str
) –Specify the model to access (Note that you need to use Model ID or Endpoint ID when using Doubao. For details on how to obtain it, see Getting the Inference Access Point. Before using the model, you must first activate the corresponding service on the Doubao platform.), default is
gpt-3.5-turbo(openai)
/SenseChat-5(sensenova)
/glm-4(glm)
/moonshot-v1-8k(kimi)
/qwen-plus(qwen)
/mistral-7b-instruct-v0.2(doubao)
. -
source
(str
) –Specify the type of module to create. Options include
openai
/sensenova
/glm
/kimi
/qwen
/doubao
/deepseek (not yet supported)
. -
base_url
(str
) –Specify the base link of the platform to be accessed. The default is the official link.
-
system_prompt
(str
) –Specify the requested system prompt. The default is the official system prompt.
-
stream
(bool
) –Whether to request and output in streaming mode, default is streaming.
-
return_trace
(bool
) –Whether to record the results in trace, default is False.
Examples:
>>> import lazyllm
>>> from functools import partial
>>> m = lazyllm.OnlineChatModule(source="sensenova", stream=True)
>>> query = "Hello!"
>>> with lazyllm.ThreadPoolExecutor(1) as executor:
... future = executor.submit(partial(m, llm_chat_history=[]), query)
... while True:
... if value := lazyllm.FileSystemQueue().dequeue():
... print(f"output: {''.join(value)}")
... elif future.done():
... break
... print(f"ret: {future.result()}")
...
output: Hello
output: ! How can I assist you today?
ret: Hello! How can I assist you today?
>>> from lazyllm.components.formatter import encode_query_with_filepaths
>>> vlm = lazyllm.OnlineChatModule(source="sensenova", model="SenseChat-Vision")
>>> query = "what is it?"
>>> inputs = encode_query_with_filepaths(query, ["/path/to/your/image"])
>>> print(vlm(inputs))
Source code in lazyllm/module/onlineChatModule/onlineChatModule.py
lazyllm.module.OnlineEmbeddingModule
Used to manage and create online Embedding service modules currently on the market, currently supporting openai, sensenova, glm, qwen, doubao.
Parameters:
-
source
(str
) –Specify the type of module to create. Options are
openai
/sensenova
/glm
/qwen
/doubao
. -
embed_url
(str
) –Specify the base link of the platform to be accessed. The default is the official link.
-
embed_mode_name
(str
) –Specify the model to access (Note that you need to use Model ID or Endpoint ID when using Doubao. For details on how to obtain it, see Getting the Inference Access Point. Before using the model, you must first activate the corresponding service on the Doubao platform.), default is
text-embedding-ada-002(openai)
/nova-embedding-stable(sensenova)
/embedding-2(glm)
/text-embedding-v1(qwen)
/doubao-embedding-text-240715(doubao)
Examples:
>>> import lazyllm
>>> m = lazyllm.OnlineEmbeddingModule(source="sensenova")
>>> emb = m("hello world")
>>> print(f"emb: {emb}")
emb: [0.0010528564, 0.0063285828, 0.0049476624, -0.012008667, ..., -0.009124756, 0.0032043457, -0.051696777]
Source code in lazyllm/module/onlineEmbedding/onlineEmbeddingModule.py
lazyllm.module.OnlineChatModuleBase
Bases: ModuleBase
OnlineChatModuleBase is a public component that manages the LLM interface for open platforms, and has key capabilities such as training, deployment, and inference. OnlineChatModuleBase itself does not support direct instantiation; it requires subclasses to inherit from this class and implement interfaces related to fine-tuning, such as uploading files, creating fine-tuning tasks, querying fine-tuning tasks, and deployment-related interfaces, such as creating deployment services and querying deployment tasks. If you need to support the capabilities of a new open platform's LLM, please extend your custom class from OnlineChatModuleBase:
-
Consider post-processing the returned results based on the parameters returned by the new platform's model. If the model's return format is consistent with OpenAI, no processing is necessary.
-
If the new platform supports model fine-tuning, you must also inherit from the FileHandlerBase class. This class primarily validates file formats and converts .jsonl formatted data into a format supported by the model for subsequent training.
-
If the new platform supports model fine-tuning, you must implement interfaces for file upload, creating fine-tuning services, and querying fine-tuning services. Even if the new platform does not require deployment of the fine-tuned model, please implement dummy interfaces for creating and querying deployment services.
-
If the new platform supports model fine-tuning, provide a list of models that support fine-tuning to facilitate judgment during the fine-tuning service process.
-
Configure the api_key supported by the new platform as a global variable by using
lazyllm.config.add(variable_name, type, default_value, environment_variable_name)
.
Examples:
>>> import lazyllm
>>> from lazyllm.module import OnlineChatModuleBase
>>> from lazyllm.module.onlineChatModule.fileHandler import FileHandlerBase
>>> class NewPlatformChatModule(OnlineChatModuleBase):
... def __init__(self,
... base_url: str = "<new platform base url>",
... model: str = "<new platform model name>",
... system_prompt: str = "<new platform system prompt>",
... stream: bool = True,
... return_trace: bool = False):
... super().__init__(model_type="new_class_name",
... api_key=lazyllm.config['new_platform_api_key'],
... base_url=base_url,
... system_prompt=system_prompt,
... stream=stream,
... return_trace=return_trace)
...
>>> class NewPlatformChatModule1(OnlineChatModuleBase, FileHandlerBase):
... TRAINABLE_MODELS_LIST = ['model_t1', 'model_t2', 'model_t3']
... def __init__(self,
... base_url: str = "<new platform base url>",
... model: str = "<new platform model name>",
... system_prompt: str = "<new platform system prompt>",
... stream: bool = True,
... return_trace: bool = False):
... OnlineChatModuleBase.__init__(self,
... model_type="new_class_name",
... api_key=lazyllm.config['new_platform_api_key'],
... base_url=base_url,
... system_prompt=system_prompt,
... stream=stream,
... trainable_models=NewPlatformChatModule1.TRAINABLE_MODELS_LIST,
... return_trace=return_trace)
... FileHandlerBase.__init__(self)
...
... def _convert_file_format(self, filepath:str) -> str:
... pass
... return data_str
...
... def _upload_train_file(self, train_file):
... pass
... return train_file_id
...
... def _create_finetuning_job(self, train_model, train_file_id, **kw):
... pass
... return fine_tuning_job_id, status
...
... def _query_finetuning_job(self, fine_tuning_job_id):
... pass
... return fine_tuned_model, status
...
... def _create_deployment(self):
... pass
... return self._model_name, "RUNNING"
...
... def _query_deployment(self, deployment_id):
... pass
... return "RUNNING"
...
Source code in lazyllm/module/onlineChatModule/onlineChatModuleBase.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
|
lazyllm.module.OnlineEmbeddingModuleBase
Bases: ModuleBase
OnlineEmbeddingModuleBase is the base class for managing embedding model interfaces on open platforms, used for requesting text to obtain embedding vectors. It is not recommended to directly instantiate this class. Specific platform classes should inherit from this class for instantiation. If you need to support the capabilities of embedding models on a new open platform, please extend your custom class from OnlineEmbeddingModuleBase:
-
If the request and response data formats of the new platform's embedding model are the same as OpenAI's, no additional processing is needed; simply pass the URL and model.
-
If the request or response data formats of the new platform's embedding model differ from OpenAI's, you need to override the _encapsulated_data or _parse_response methods.
-
Configure the api_key supported by the new platform as a global variable by using
lazyllm.config.add(variable_name, type, default_value, environment_variable_name)
.
Examples:
>>> import lazyllm
>>> from lazyllm.module import OnlineEmbeddingModuleBase
>>> class NewPlatformEmbeddingModule(OnlineEmbeddingModuleBase):
... def __init__(self,
... embed_url: str = '<new platform embedding url>',
... embed_model_name: str = '<new platform embedding model name>'):
... super().__init__(embed_url, lazyllm.config['new_platform_api_key'], embed_model_name)
...
>>> class NewPlatformEmbeddingModule1(OnlineEmbeddingModuleBase):
... def __init__(self,
... embed_url: str = '<new platform embedding url>',
... embed_model_name: str = '<new platform embedding model name>'):
... super().__init__(embed_url, lazyllm.config['new_platform_api_key'], embed_model_name)
...
... def _encapsulated_data(self, text:str, **kwargs):
... pass
... return json_data
...
... def _parse_response(self, response: dict[str, any]):
... pass
... return embedding